BA-BCS2024 // DISTRIBUCIÓN DE POSTERS POR SESIÓN

Sesion	Nro de Poster	Autor	Titulo	Area
1	1	Andersen	Targeting RAC1: A Promising therapeutic approach for Triple- Negative Breast Cancer	Biology of Her2/Neu and TNB cancers
1	4	Ariza Bareño	Norcantharidin: a promising natural compound for the treatment triple negative breast cancer.	Biology of Her2/Neu and TNB cancers
1	7	Barraza de laTorre	The Molecular Mechanism of Protein Phosphatase PP2A as a Potential Therapeutic Target to Counteract Metastasis in Breast Cancer	Biology of Her2/Neu and TNB cancers
1	10	Britos	Metronomic chemotherapy in TNBC MDA-MB231 cells exposed to nicotine. Nitric Oxide Synthase participation.	Biology of Her2/Neu and TNB cancers
1	13	Couto	INVOLVEMENT OF RUNX1 IN TUMOR HETEROGENEITY ON TNBC CELL LINES	Biology of Her2/Neu and TNB cancers
1	16	Dattilo	Insights into Androgen Receptor-Mediated Regulation of Acyl-CoA Synthetase 4 in Breast Cancer	Biology of Her2/Neu and TNB cancers
1	19	Gonzalez	Thyroid hormones modulate breast cancer metastasis formation by regulating the immune subset distribution in the lungs	Biology of Her2/Neu and TNB cancers
1	22	Pereyra	Triple-Negative Breast Cancer: effects of Tamoxifen in the lysosomal pathway	Biology of Her2/Neu and TNB cancers
1	25	Pezzoni	HISTAMINE MODULATES INTRATUMOR MICROBIOTA IN 4T1 TRIPLE NEGATIVE BREAST CANCER	Biology of Her2/Neu and TNB cancers
1	28	Sanchez	Metronomic chemotherapy combining paclitaxel and a muscarinic agonist for triple negative breast cancer treatment	Biology of Her2/Neu and TNB cancers
1	31	Toro	Targeting ID4 to Reprogram Triple-Negative Breast Cancer for Endocrine Therapy Sensitivity	Biology of Her2/Neu and TNB cancers
1	34	Vivanco	Recovery of specific miRNAs in heparinized plasma obtained from HER2+ breast cancer patients who underwent neoadjuvant therapy protocol.	Biology of Her2/Neu and TNB cancers
1	37	Ambrosio	Doxorubicin-loaded sulfonated polyvinyl alcohol microspheres inhibit tumor growth in a murine model of breast cancer.	Biology of luminal breast cancer
1	40	Bogni	IMPACT OF PROMOTER POLYMORPHISM (rs251864) ON ZFP36/TTP TUMOR SUPPRESSOR EXPRESSION IN LUMINAL BREAST CANCER CELLS	Biology of luminal breast cancer

1	43	Coianis	ANDROGEN RECEPTORS AND WNT PATHWAY AS THERAPEUTIC TARGETS IN ENDOCRINE RESISTANT BREAST CANCER MODELS	Biology of luminal breast cancer
1	46	de los Santos	Influence of aging on RET-mediated mammary tumor features and incidence	Biology of luminal breast cancer
1	49	EHRENFELD SLATER	UNVEILING THE ROLE OF KLK4 AND KLK12 IN THE BREAST CANCER	Biology of luminal breast cancer
1	52	Gutierrez	FUNCTIONAL ANALYSIS OF GLUCOCORTICOID AND PROGESTERONE RECEPTOR CROSSTALK	Biology of luminal breast cancer
1	55	Mondaca	Combination of GnRH Agonist/Antagonist with Protein Kinase Inhibitors Counteracts Growth and Metastasis in Breast Cancer	Biology of luminal breast cancer
1	58	Montani	TGFβ signaling pathway participates in Heregulin induced luminal breast cancer cell migration	Biology of luminal breast cancer
1	61	Nazer	Seeking the Truth Behind the Myth: Nuclear Role for Argonaute-1 as an Estrogen-Dependent Enhancer Coactivator	Biology of luminal breast cancer
1	64	Pagnotta	Metabolic remodeling and the impact of the adipose microenvironment in breast cancer	Biology of luminal breast cancer
1	67	Rodriguez	Elucidating the role of FGFR2 activation and RUNX2 expression in the progression of luminal breast cancer	Biology of luminal breast cancer
1	70	Saldain	Invasive mammary carcinomas with different progesterone receptor isoform ratios: metastatic vs. proliferative ability, which is worse?	Biology of luminal breast cancer
1	73	i Villagra Delgado	Effect of CDK2 inhibitors on cell proliferation in an experimental human breast cancer model.	Biology of luminal breast cancer
2	2	Almeida Gouvêa	Adrenergic receptor expression from public breast cancer databases	Breast Cancer Genomics and Transcriptomics
2	5	Ant	Tamoxifen breast cancer treatment modify chromatin lansdcape of endometrial cells	Breast Cancer Genomics and Transcriptomics
2	8	Elia	Transcriptomic profile of primary luminal breast carcinomas with imbalanced progesterone receptor isoforms expression	Breast Cancer Genomics and Transcriptomics
2	11	Gomez	Expression and Subcellular Localization of TP73 Isoforms as Prognostic Factors in Breast Cancer Molecular Subtypes	Breast Cancer Genomics and Transcriptomics
2	14	lungman	WARNING! Your cell line is just a model. A study of COL1A1 alternative promoters in breast cancer cells.	Breast Cancer Genomics and Transcriptomics

2	17	Lara Montero	ANALYSIS OF TRISTETRAPOLIN (TTP) BIOLOGICAL ROLE AND TRANSCRIPTIONAL REGULATION IN BREAST CANCER CELLS	
2	20	Muller Igaz	RNA-binding proteins in cancer: exploratory analysis of the neurodegenerative disease-related protein TDP-43	Breast Cancer Genomics and Transcriptomics
2	23	Olszanowski	The Liver X Receptor interferes with Estrogen Receptor- dependent genomic regulation in MCF7 cells	Breast Cancer Genomics and Transcriptomics
2	26	Ortiz	UNCOVERING GENE EXPRESSION REGULATION OF R- SPONDIN3, AN ONCOGENE INVOLVED IN BREAST CANCER PROGRESSION	Breast Cancer Genomics and Transcriptomics
2	29	Redondo	GENOMIC PROFILE OF GENETIC VARIANTS ASSOCIATED WITH HEREDITARY BREAST/OVARIAN CANCER: EXPERIENCE FROM THE ANALYSIS OF MULTIGENE PANEL TESTING IN ARGENTINA	Breast Cancer Genomics and Transcriptomics
2	32	Vanderhoeven	Differential Response to All-Trans Retinoic Acid in Breast Cancer Cells: Effects on Metastatic Pathways and Gene Expression	Breast Cancer Genomics and Transcriptomics
2	35	Ariza Bareño	ANALYSIS OF GPC3 EFFECT ON CANCER STEM CELL POPULATIONS	Cancer Stem Cells, Primary Tumor Initiation and Early Metastasis
2	38	Berton	The galectin-1-glycan axis in tumour progression and metastasis in breast cancer.	Cancer Stem Cells, Primary Tumor Initiation and Early Metastasis
2	41	Britez Neira	Lapatinib treatment induces cytotoxic effects on different tumor cell lines and decreases Stemness in triple-negative breast cancer cell lines.	Cancer Stem Cells, Primary Tumor Initiation and Early Metastasis
2	44	Lasagna	The agrotoxicant chlorpyrifos increases CSC subpopulation and regulates the expression of CSC markers and molecular targets involved in resistance to antiestrogen therapy	Cancer Stem Cells, Primary Tumor Initiation and Early Metastasis
2	47	SOSA	RUNX1 TRANSCRIPTIONAL ACTIVITY FAVORS A FINGERPRINT OF DRUG RESISTANCE IN TNBC CELL LINES	Cancer Stem Cells, Primary Tumor Initiation and Early Metastasis
2	50	Balsa	Anticancer activity of novel copper (II) compounds with an acylhydrazone ligands against 2D and 3D human breast cancer models.	Early detection and treatment
2	53	Birocco	Transcriptional factor STAT3 as a potential target for nanoparticle-delivered therapeutics, towards CD44+ breast cancer cells	Early detection and treatment
2	56	Carducci Sartorio	MIR-28 IMPAIRS PROLIFERATION AND METASTATIC CHARACTERISTICS OF TRIPLE NEGATIVE BREAST CANCER CELLS	Early detection and treatment
2	59	Goldberg	Exploring Racemic 5,5-(aryl-alkyl)substituted thiadiazolines as Promising Agents for Treatments of Breast Cancer	Early detection and treatment
2	62	Grinpelc	Impact of let-7b-5p on triple negative breast cancer growth and progression.	Early detection and treatment

2	65	Hernandez	Design of a platform to rank chemotherapeutic drugs with a multidimensional approach	Early detection and treatment
2	68	Moyano	Use of ascitic fluid from patients to evaluate the mechanisms of action of PARP inhibitors	Early detection and treatment
2	71	Nicoud	Evaluation of Histamine H3 and H4 Receptors as Prognostic Biomarkers in Triple-Negative Breast Cancer	Early detection and treatment
2	74	Okraine	The displacement of translesion DNA synthesis polymerases from the replisome sensitize tumor cells to genotoxins	Early detection and treatment
2	76	Santa Maria de la Parra	Antiproliferative activity and mechanism of action of novel potent anticancer metallocompound CuHL1 on human TNBC cells	Early detection and treatment
2	78	Vasconcelos Esteves Pinto	CYTOTOXIC ACTION OF SHIGA TOXIN IN TRIPLE-NEGATIVE BREAST CANCER: POTENTIAL THERAPEUTIC USE AND INVOLVEMENT OF TDP-43	Early detection and treatment
3	3	Abramovici Blasco	A novel strategy to kill FANC/BRCA-deficient tumors: depleting cellular glutathione.	Fighting treatment resistance. Immunotherapy
3	6	Bruni	Soluble TNF blockade boosts the antitumoral effects of trastuzumab deruxtecan in HER2 positive breast cancer	Fighting treatment resistance. Immunotherapy
3	0	Canzoneri	Differential expression of regulatory T cells marker genes from peripheral blood of breast cancer patients	Fighting treatment resistance. Immunotherapy
3	12	Mares Ahlers	Relevance of the correct activation of key mitotic proteins for the survival of cells harboring deficient expression of the BRCA1 and BRCA2 tumor suppressors	Fighting treatment resistance. Immunotherapy
3	15	Ospital	LINS01 HISTAMINE H3 RECEPTOR ANTAGONISTS OVERCOME PLACLITAXEL CHEMORESISTANCE IN 4T1 TRIPLE NEGATIVE BREAST CANCER	Fighting treatment resistance. Immunotherapy
3	18	Rodriguez- Baili	Extracellular vesicles derived from TNF-α conditioned macrophages promote endocrine resistance in breast tumor cells	Fighting treatment resistance.
3	21	Salatino	Mifepristone treatment reverts T cell exclusion and immunotherapy resistance programs in hormone-dependent breast luminal tumors	Fighting treatment resistance. Immunotherapy
3	24-A	Torres Orellana	4HER project: Impact of HER Family Co-Amplifications on Trastuzumab Efficacy and Clinical Outcomes in HER2- Positive Breast Cancer	Fighting treatment resistance. Immunotherapy
3	24-B	Díaz Albuja	Impact of Thyroid Hormones on Chemotherapy Efficacy in Triple-Negative Breast Cancer Cells via Integrin ανβ3	Fighting treatment resistance. Immunotherapy
3	24-C	Vitale	4-methylumbelliferone sensitizes breast cancer spheroids to chemotherapeutic treatment with epirubicin: new perspectives for pharmacological repositioning	Fighting treatment resistance. Immunotherapy

3	27	Alamino	Synergistic Antitumor Effects of Metformin and Alpha-Lipoic Acid on Breast Cancer Cell Viability	Metabolism, Signaling and Breast Cancer Risk
3	30	Anselmi Relats	In vitro and in vivo effect of the combination of 2'- nitroflavone and safingol in breast cancer	Metabolism, Signaling and Breast Cancer Risk
3	33	BOZTEPE	Boosting Antitumor Action of a Copper(II)-Hydrazone Compound Using Functional Polymer Nanoparticles.	Metabolism, Signaling and Breast Cancer Risk
3	36	Bujan	EXPOSURE TO ENDOCRINE DISRUPTOR IMIDACLOPRID ENHANCES CELL PROLIFERATION AND MIGRATION IN HER2 POSITIVE BREAST CANCER MODEL	Metabolism, Signaling and Breast Cancer Risk
3	39	Cano	THYROXINE PROMOTE MCF-7 CELL VIABILITY VIA GENOMIC PATHWAYS	Metabolism, Signaling and Breast Cancer Risk
3	42	Fernández Chávez	GEF-H1 drives breast cancer cells to tumor formation and metastasis	Metabolism, Signaling and Breast Cancer Risk
3	45	Miret	Imidacloprid as a risk factor for breast cancer development	Metabolism, Signaling and Breast Cancer Risk
3	48	Moscoso	WNT5A IS INVOLVED IN THE PRO-TUMORIGENIC ROLE OF GPAT2 EXPRESSION IN MDA CELLS	Metabolism, Signaling and Breast Cancer Risk
3	51	MUÑOZ GARZON	Biological activity of two new copper(II)-neocuproine complexes and L-dipeptides (L-Ala-L-Phe) in two breast cancer cell lines.	Metabolism, Signaling and Breast Cancer Risk
3	54	Santa Cruz	IN VITRO EFFECT OF NEW HSP90 INHIBITORS ON BREAST CANCER CELLS	Metabolism, Signaling and Breast Cancer Risk
3	57	Santos	Effect of neonicotinoid insecticide imidacloprid exposure on breast cancer cells	Metabolism, Signaling and Breast Cancer Risk
3	60	Schweitzer	HEMEOXIGENASE-1 GENETIC VARIANTS EFFECTS ON BREAST CANCER PROGRESSION	Metabolism, Signaling and Breast Cancer Risk
3	63	Sebik Vasquez	CYTOTOXIC EFFECTS OF NOVEL NAPHTHOQUINONES ON MDA-MB-231 BREAST CANCER CELLS: INDUCTION OF OXIDATIVE STRESS AND APOPTOSIS	Metabolism, Signaling and Breast Cancer Risk
3	66-A	Solla	Association between nutrition and tumor microenvironment in breast cancer	Metabolism, Signaling and Breast Cancer Risk
3	66-B	Cayado Gutiérrez	Antitumoral effects of natural derivatives in human breast cancer cells	Metabolism, Signaling and Breast Cancer Risk
3	69	Aguirre	Tumoral PD-L1-dependent regulation of TAM immunosuppresion during TNBC progression	Understanding and modeling breast cancer subtypes

3	72	Cardozo	Characterization of Novel M46 Murine Breast Cancer Model	Understanding and modeling breast cancer subtypes
3	75	Fernández	Participation of RUNX1 in mitochondrial dynamics and reprogramming in AR+ TNBC	Understanding and modeling breast cancer subtypes
3	77	I Pataccini	Subtyping breast cancer PDX: androgen and glucocorticoid receptors, EGFR and lineage markers	Understanding and modeling breast cancer subtypes
3	79	I Real	LEFT-RIGHT EPIGENETIC AND BIOELECTRIC DIFFERENCES IN BREAST CANCER	Understanding and modeling breast cancer subtypes
3	80	Morán Maidana	Studying tumor microenvironment components in breast cancer: association between hyaluronan metabolism and DNA repair mechanisms.	Understanding and modeling breast cancer subtypes